skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In modern smart grids, accurate and synchronized time signals are essential for effective monitoring, protection, and control. Various time synchronization methods exist, each tailored to specific application needs. Widely adopted solutions, such as GPS, however, are vulnerable to challenges such as signal loss and cyber-attacks, underscoring the need for reliable backup or supplementary solutions. This paper examines the timing requirements across different power grid applications and provides a comprehensive review of available time synchronization mechanisms. Through a comparative analysis of timing methods based on accuracy, flexibility, reliability, and security, this study offers insights to guide the selection of optimal solutions for seamless grid integration. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. In this paper, we investigate the possibility of performing Gaussian elimination for arbitrary binary matrices on hardware. In particular, we presented a generic approach for hardware-based Gaussian elimination, which is able to process both non-singular and singular matrices. Previous works on hardware-based Gaussian elimination can only process non-singular ones. However, a plethora of cryptosystems, for instance, quantum-safe key encapsulation mechanisms based on rank-metric codes, ROLLO and RQC, which are among NIST post-quantum cryptography standardization round-2 candidates, require performing Gaussian elimination for random matrices regardless of the singularity. We accordingly implemented an optimized and parameterized Gaussian eliminator for (singular) matrices over binary fields, making the intense computation of linear algebra feasible and efficient on hardware. To the best of our knowledge, this work solves for the first time eliminating a singular matrix on reconfigurable hardware and also describes the a generic hardware architecture for rank-code based cryptographic schemes. The experimental results suggest hardware-based Gaussian elimination can be done in linear time regardless of the matrix type. 
    more » « less
  4. Abstract The advancement of microcomb sources, which serve as a versatile and powerful platform for various time–frequency measurements, have spurred widespread interest across disciplines. Their uses span coherent optical and microwave communications, atomic clocks, high-precision LiDARs, spectrometers, and frequency synthesizers. Recent breakthroughs in fabricating optical micro-cavities, along with the excitation and control of microcombs, have broadened their applications, bridging the gap between physical exploration and practical engineering systems. These developments pave the way for pioneering approaches in both classical and quantum information sciences. In this review article, we conduct a thorough examination of the latest strategies related to microcombs, their enhancement and functionalization schemes, and cutting-edge applications that cover signal generation, data transmission, quantum analysis, and information gathering, processing and computation. Additionally, we provide in-depth evaluations of microcomb-based methodologies tailored for a variety of applications. To conclude, we consider the current state of research and suggest a prospective roadmap that could transition microcomb technology from laboratory settings to broader real-world applications. 
    more » « less
  5. In this paper, we investigate the practical performance of rank-code based cryptography on FPGA platforms by presenting a case study on the quantum-safe KEM scheme based on LRPC codes called ROLLO, which was among NIST post-quantum cryptography standardization round-2 candidates. Specifically, we present an FPGA implementation of the encapsulation and decapsulation operations of the ROLLO KEM scheme with some variations to the original specification. The design is fully parameterized, using code-generation scripts to support a wide range of parameter choices for security levels specified in ROLLO. At the core of the ROLLO hardware, we presented a generic approach for hardware-based Gaussian elimination, which can process both non-singular and singular matrices. Previous works on hardware-based Gaussian elimination can only process non-singular ones. However, a plethora of cryptosystems, for instance, quantum-safe key encapsulation mechanisms based on rank-metric codes, ROLLO and RQC, which are among NIST post-quantum cryptography standardization round-2 candidates, require performing Gaussian elimination for random matrices regardless of the singularity. To the best of our knowledge, this work is the first hardware implementation for rank-code-based cryptographic schemes. The experimental results suggest rank-code-based schemes can be highly efficient. 
    more » « less
  6. We present the first specification-compliant constant-time FPGA implementation of the Classic McEliece cryptosystem from the third-round of NIST’s Post-Quantum Cryptography standardization process. In particular, we present the first complete implementation including encapsulation and decapsulation modules as well as key generation with seed expansion. All the hardware modules are parametrizable, at compile time, with security level and performance parameters. As the most time consuming operation of Classic McEliece is the systemization of the public key matrix during key generation, we present and evaluate three new algorithms that can be used for systemization while complying with the specification: hybrid early-abort systemizer (HEA), single-pass early-abort systemizer (SPEA), and dual-pass earlyabort systemizer (DPEA). All of the designs outperform the prior systemizer designs for Classic McEliece by 2.2x to 2.6x in average runtime and by 1.7x to 2.4x in time-area efficiency. We show that our complete Classic McEliece design for example can perform key generation in 5.2 ms to 20 ms, encapsulation in 0.1 ms to 0.5 ms, and decapsulation in 0.7 ms to 1.5 ms for all security levels on an Xlilinx Artix 7 FPGA. The performance can be increased even further at the cost of resources by increasing the level of parallelization using the performance parameters of our design. 
    more » « less
  7. Abstract Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish,Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian–earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity. 
    more » « less